
 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 221
 ICARI

Agent Unified Modeling Language in Agent Oriented
Software Engineering: A Comprehensive Modeling
Language Representing Agent Interection Protocol
Deependra Rastogi
Department of Computer Engineering, GRD, Institute of Management and Technology, Dehradun, India

 Abstract

The concentrate of all earlier period programming experience and
innovations for writing high-quality programs in cost effective and
proficient ways have been systematically organized into body of
knowledge. This comprehension forms the foundation of the software
engineering principles. Software engineering discusses methodical and
cost effective techniques to software growth. Agent Oriented Software
Engineering techniques must be evaluated and compared to gain a
better understanding of how Agent should be enginnered and evolved.
Unified Modeling Language is a standardized, general purpose
modeling language in the ground of software engineering. The Unified
Modeling Language includes a set of graphic notation techniques to
produce visual models of Object Oreinted Software intensive system.
An Agent Unified Modeling Language is an extension of the Unified
Modeling Language, a de facto standard for Object—Oreinted analysis
and design. AUML is not a language but it is only aproposal. In this
paper, I am just presenting the mechanism to model protocol for
multiagent interaction. Intraction is driven by interaction protocols.

1. Introduction
For the past decade, study on agent-oriented

software engineering had suffered from a lack of
handle with the world of engineering software
growth. Newly, it has been documented that the use of
software agents is improbable likely to gain wide
receiving in industry except it relates to de facto
standards (object-oriented software development) and
supports the growth surroundings throughout the
complete system lifecycle.

Fruitfully bringing agent knowledge to market
requires techniques that diminish the apparent risk
intrinsic in any new technology, by presenting the
new technology as an incremental addition of known
and trusted methods, and by providing explicit
engineering tools to hold up proven methods of skill
deployment.

Practical to agents, these insights entail come
within reach of that:
 Introduces agents as an addition of dynamic

Corresponding Author,
E-mail address: deependra.libra@gmail.com
All rights reserved: http://www.ijari.org

objects: an agent is an object that can say
"go"(flexible autonomy as the capability to begin
action without outside incantation) and "no"
(flexible independence as the capability to refuse
or modify an exterior request)

 Promotes the use of ordinary representations for
methods and tools to hold up the analysis,
requirement, and design of agent software.
The earlier aspect of our approach leads us to

center on quite fine-grained agents. More complicated
capabilities can also be supplementary where needed,
such as mobility, mechanisms for in lieu of and way
of thinking about knowledge, and explicit modeling
of other agents. Such capabilities are extensions to
our essential agents—we do not reflect on them
analytic of agenthood.

To attain the latter, three significant individuality
of industrial software growth should be addressed:
1. The extent of engineering software projects is

much better than typical educational research
hard work, connecting many more populace
crossways a longer period of time. Thus,
communication is necessary;

Article Info

Article history:
Received 2 January 2014
Received in revised form
10 January 2014
Accepted 20 January 2014
Available online 1 February 2014

Keywords
Software Engineering
Agent
Object
UML
AUML
Intraction Protocol

 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 222
 ICARI

2. The skills of developers are listening carefully
more on progress tactic than on tracking the latest
agent techniques. Thus, codifying best put into
practice is essential;

3. Industrial projects have clear achievement
criteria. Thus, traceability between initial
necessities and the final deliverable is necessary.
The Unified Modeling Language (UML) is ahead

wide receipt for the demonstration of engineering
artifacts in object-oriented software. Our view of
agents as the next step beyond objects leads us to
explore extensions to UML and idioms within UML
to provide accommodation the individual
requirements of agents. To pursue this objective,
recently cooperation has been recognized
sandwiched between the Foundation of Intelligent
Physical Agents (FIPA) and the Object Management
Group (OMG).

In this paper, we explain a core part within
AGENT UML, i.e., mechanisms to representation
protocols for multiagent interaction. This is achieved
by introducing a innovative class of diagrams into
UML: protocol diagrams. Protocol diagrams extend
UML state and sequence diagrams in a variety of
ways. Exacting extensions in this circumstance
consist of agent roles, multithreaded lifelines,
extended message semantics, parameterized nested
protocols, and protocol templates.

2. Software Specification Technique

AGENT UML is an endeavor to bring jointly
research on agent-based software methodologies and
emerging principles for object-oriented software
growth.

2.1 Methodologies for Agent Based Software
Development

2.1.1 Gaia

Gaia is one of the first methodologies which are
purposely modified to the analysis and design of
agent based system. Its major purpose is to make
available the designers with a modeling structure and
several connected techniques to design agent leaning
systems. Gaia separates the process of designing
software into two different stages: analysis and
design. Analysis involves construction the theoretical
models of the target system, whereas the design point
transform those abstract constructed to concrete
entities which have direct mapping to implementing
code. Figure 1 depicts the main artifacts of each stage:
Role Model and Interaction Model (Analysis), and
Agent Model, Services Model, and Acquaintance
Model (Design). [1]

Fig: 1. Gaia Model

Gaia encourages the developers to view an agent
based system as an organization. The software system
association is similar to a real world organization. It
has a certain number of entities in performance
different roles. For instance, a university organization
has several key roles such as organization, teaching,
research, students, etc. These roles are played by
dissimilar people in the university such as managers,
lectures, students, etc. inspired by that analogy, Gaia
guides the designers to the direction of building
agent-based as a process of organizational design.[1]

2.1.2 Multiagent Systems Engineering (MaSE)

Multiagent System Engineering (MaSE) [2, 3] is
an agent-oriented software engineering methodology
which is a lean-to of the object-oriented. MaSE does
not outlook agents as being essentially autonomous,
proactive, etc; quite agents are “simple software
processes that interact with each other to meet an
overall system goal.”[3]. In fact they view agents as
specializations of objects which may have some of the
individuality of weak agency. In addition, all the
mechanism in the system are uniformly treated in
spite of whether they posses cleverness or not.
Because of this inherent point of view, MaSE is
constructed according to the request of existing
object-oriented method to the analysis and design of
multiagent systems.[3]

As a software engineering methodology, the main
goal of MsSE is to provide a complete—lifecycle
methodology to assist system developers to design
and develop a multi—agent system. Similar to Gaia, it
also assumes the availability of an initial requirement
prior specification to the start of software
development under the methodology process. The
process consists of seven steps, divided into two
phases. The Analysis phase consists of three steps:
Capturing Goals, Applying Use Cases, and Refining
Roles. The remaining four process steps, creating
Agent Classes, Constructing Conversations,
Assembling Agent Classes and System Design, from
the Design phase (Figure 2).

 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 223
 ICARI

Fig: 2. MaSE’s process step and artifacts [2]

The wide range of activity in this area is a sign of
the increasing impact of agent-based systems, since
the demand for methodologies and artifacts reflects
the growing commercial importance of agent
technology. Our objective is not to compete with any
of these efforts, but rather to extend and apply a
widely accepted modeling and representational
formalism (UML) in a way that harnesses their
insights and makes it useful in communicating across
a wide range of research groups and development
methodologies.

3. UML
Object-Oriented Software Engineering (OOSE) is

a software design technique that is used in software
design in object-oriented programming. OOSE is
developed by Ivar Jacobson in 1992. OOSE is the
first object-oriented design methodology that employs
use cases in software design. OOSE is one of the
precursors of the Unified Modeling Language (UML),
such as Booch and OMT. It includes a requirement,
an analysis, a design, an implementation and a testing
model.[4]
UML support the following kind of models.

 Use cases: the measurement of actions that a
system or class can execute by interacting with
outside actors. They are frequently used to
describe how a customer communicates with a
software product.

 Static models: explain the static semantics of
information and messages in a theoretical and

implementational way (e.g., class and package
diagrams).

 Dynamic models: consist of interaction diagrams
(i.e., sequence and collaboration diagrams), state
charts, and activity diagrams.

 Implementation models: explain the component
distribution on different platforms (e.g.,
component models and deployment diagrams).

 Object constraint language (OCL): a simple
formal language to articulate more semantics
within an UML specification. It can be used to
describe constraints on the model, invariant, pre-
and post-conditions of operations and direction-
finding paths within an object net.
The purpose of use case diagram is to capture the

dynamic aspect of a system. But this definition is too
generic to describe the purpose. Because other four
diagrams (activity, sequence, collaboration and
Statechart) are also having the same purpose. So we
will look into some specific purpose which will
distinguish it from other four diagrams. Use case
diagrams are used to gather the requirements of a
system including internal and external influences.
These requirements are mostly design requirements.
So when a system is analyzed to gather its
functionalities use cases are prepared and actors are
identified. [5]

Fig: 3. UML Model Diagram [4]

In this paper, we offer agent-based extensions to
three following UML representations: packages,
templates, and sequence diagrams. This consequences
in a new diagram type, called protocol diagram, and
which will be measured for addition into UML

 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 224
 ICARI

version 2.0 by OMG. The UML model semantics are
represented by a meta-model the construction of
which is also formally defined by OCL syntax.
Extensions to this meta-model and its constraint
language are not addressed by this paper.

4. A rationale for AGENT UML
UML provides an inadequate foundation for

modeling agents and agent-based systems [Bauer,
1999]. Essentially, this is due to two reasons: Firstly,
compared to objects, agents are dynamic because they
can take the proposal and have organized over
whether and how they progression external requests.
Secondly, agents do not only act in separation but in
collaboration or synchronization with other agents.
Multiagent systems are social communities of inter-
reliant members that act individually.

An application for a full life-cycle requirement of
agent-based system growth is beyond the extent for
this paper. In this paper, we will focus on a division of
an agent-based UML lean-to for the requirement of
agent interaction protocols (AIP).

This subset was selected because AIPs are
compound enough to exemplify the nontrivial use of
and are used frequently enough to make this subset of
AGENT UML helpful to other researchers. AIPs are a
precise class of software design patterns in that they
explain problems that occur regularly in multiagent
systems and then explain the core of a reusable
solution to that problem.

The explanation of interaction protocols is part of
the requirement of the dynamical model of an agent
system. In UML, this model is captured by interaction
diagrams, state diagrams and activity diagrams.
 Interaction diagrams i.e. sequence diagrams and

collaboration diagrams are used to describe the
performance of groups of objects. Typically, one
interaction diagram captures the performance of
one use case. These diagrams are principally used
to define basic communications between objects
at the level of method incantation; they are not
well-suited for recitation the types of complex
social communication as they occur in multiagent
systems.

 State diagrams are used to representation the
performance of a absolute system. They define all
probable states an object can arrive at and how an
object's state changes depending on
communication sent to the object. They are well
suitable for defining the performance of one
single object in dissimilar use cases. However,
they are not suitable to describe the performance
of a group of cooperating objects.

 Activity diagrams are used to describe courses
of events/actions for more than a few objects and
use cases. The work reported in this paper does
not suggest modifications of activity diagrams.

5. A Layered Approach to Agent UML
Intrection Protocol
The explanation of an agent interaction protocol

(AIP) describes
 A communication pattern, with
 An allowed sequence of messages between

agents having different roles,
 Constraints on the content of the messages, and
 A semantics that is consistent with the

communicative acts (CAs) within a
communication pattern.
Figure 4 depicts a protocol articulated as a UML

sequence diagram for the agreement net protocol.
When invoked, an Initiator agent sends a call for
suggestion to an agent that is eager to contribute in
providing application. The Participant agent can then
choose to respond to the Initiator before a given time
limit by: refusing to provide a suggestion, submitting
a suggestion, or indicating that it did not recognize.
(The diamond symbol indicates a decision that can
result in zero or more transportation being
sentdepending on the circumstances it contains; the
“x” in the decision diamond indicates an exclusive or
decision.) If a suggestion is obtainable, the initiator
has a choice of either accepting or rejecting the
proposal. When the contributor receives a suggestion
acceptance, it will inform the initiator about the
proposal’s execution. Furthermore, the Initiator can
cancel the execution of the proposal at any time.

Fig: 4. A generic AIP expressed as a template

package

 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 225
 ICARI

This figure also articulte two more concepts presented
at the top of the sequence chart. First, the protocol as
a whole is treated as an entity in its own right. The
tabbed folder notation at the upper left give direction
that the protocol is a package, a theoretical
aggregation of communication sequences. Second, the
packaged protocol can be practics as a pattern that can
be modified for analogous problem areas. The dashed
box at the upper right hand corner denoted this pattern
as a template requirement that identifies unbound
entities within the tie together which need to be bound
when the package template is individual instantiated.

The unique sequence diagram in Fig. 4 give a
basic arrangement for a contract net protocol. More
dealing out detail is often required. For example, an
Initiator agent requirements a call for proposal (CFP)
from a Participant agent. However, the diagram
stipulates neither the process used by the Initiator to
produce the CFP request, nor the process employed
by the participant to respond to the CFP. Yet, such
details are significant for developing detailed agent-
based system stipulation.

Figure 5 explain how leveling can provide more
detail for anyinteraction procedure. For example, the
procedure that generated the communication act CA-1
could be compound enough to specify its dealing out
in more detail using an activity diagram. The agent
receiving CA-1 has a progression that prepares a
response. In this example, the process being particular
is depicted using a sequence diagram, though any
modeling language could be selected to further
identify an agent’s fundamental process. In UML, the
choice is an interaction diagram, an activity diagram,
or a statechart.

Fig: 5. Interaction protocols can be specified in more
detail (i.e., leveled) using a combination of diagrams.

Finally, leveling can persist “down” until the
difficulty has been specified sufficiently to develop or
construct code. So in Fig. 5, the interaction protocol at
the top of the diagram has a level of point below,
which in turn has another level of detail. Each level
can express intraagent or interagent activity.

6. Level 1: Representing The Overall
ProtocoL

Patterns are thoughts that have been establish
useful in one realistic background and can almost
certainly be useful in others. As such, they give us
examples or analogies that we strength use as
solutions to problems in system analysis and design.
Agent interaction protocols, then, make available us
with reusable solutions that can be applied to various
kinds of message sequencing we come across between
agents. There are two UML techniques that best
articulate protocol solutions for reuse: packages and
templates.

6.1 Packages

Since interaction protocols are patterns, they can
be treated as reusable aggregates of dealing out. UML
describes two ways of expressing aggregation for OO
structure and behavior: components and packages.
Mechanisms are physical aggregations that make up
classes for completion purposes. Packages aggregate
modeling elements into theoretical wholes. Here,
classes can be theoretically grouped for any subjective
purpose, such as a subsystem grouping of classes.
Since AIPs can be viewed in conceptual terms, the
package notation of a tabbed folder was employed in
Fig.

Fig: 6. Using packages to express nested protocol

Because protocols can be codified as identifiable
patterns of agent communication, they become
reusable modules of processing that can be treated as
first-class notions. For example, Fig. 3 depicts two
packages. The Purchasing package expresses a simple
protocol between a Broker and a Retailer. Here, the

 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 226
 ICARI

Broker sends a call for proposal to a Retailer and the
Retail responds with a proposal. For certain products,
the Retailer might also place a demand with a
Wholesaler regarding accessibility and cost. Based on
the return in order, the Retailer can provide a more
precise proposal. All of this could have been put into
a single Purchasing Protocol package. Though, many
businesses or departments may not need the
supplementary protocol connecting the Wholesaler.
Therefore, two packages can be defined: one for
Purchasing and one for Supplying. When a exacting
scenario requires the Wholesaler protocol, it can be
nested as a divide and distinct package. However,
when a Purchasing scenario does not require it, the
package is thriftier.

6.2 Templates

Figure 4 illustrates a universal kind of performance
that can serve as explanation in analogous problem
domains. In Fig. 6, the Supplying performance is
reused precisely as distinct by the Supplying package.
However, to be really a pattern—instead of just a
reusable component—package customization must be
supported. For example, Fig. 4 applies the FIPA
agreement Net Protocol to a particular scenario
connecting buyers and sellers. Notice that the Initiator
and Participant agents have become Buyer and Seller
agents and the call-for-proposal has developed into
the seller-rfp. Also in this situation are two forms of
rejection by the Seller: Refuse-1 and Refuse-2. Lastly,
an actual time limit has been supplied for a response
by the seller.

Fig: 7. Applying the template in Fig. 1 to a particular

scenario involving buyers and sellers.

In UML jargon, the AIP package serves as a template.
A template is a parameterized model building block
whose parameters are bound at model time (i.e., when
the new customized model is produced). In Fig. 4, the
dotted box in the upper right indicates that the
package is a pattern. The unbound parameters in the
box are alienated by horizontal lines into three
categories: role parameters, constraints, and
communication acts. Figure 8 illustrates how the
latest package in Fig. 4 is twisted using the template
definition in Fig. 4 Wooldridge et al. suggest a
similar form of definition with their protocol
definitions [8]. In their packaged templates “a pattern
of interaction . . . has been officially defined and
abstracted away from any exacting sequence of
implementation steps. Presentation interactions in this
way mean that concentration is concentrating on the
necessary nature and purpose of interaction rather
than the accurate ordering of particular message
exchanges.” Instead of the notation illustrated by
Wooldridge et al., our graphical move toward more
closely resembles UML, while expressing the same
semantics.

Fig: 8. Producing a new package using the Fig. 4

template; Fig. 4 is the resulting model.

7. Level 2: Representing Interection
Among Agents

UML’s dynamic models are useful for expressing
communications among agents. Interaction diagrams
capture the structural patterns of communications
among objects. Sequence diagrams are one affiliate of
this family; collaboration diagrams are another. The
two diagrams contain the same in sequence. The
graphical layout of the sequence diagram emphasizes
the chronological sequence of communications, while
that of the teamwork diagram emphasizes the
relations among agents. Activity diagrams and
statecharts capture the flow of processing in the agent
area.

7.1 Sequence Diagram

A brief description of sequence diagrams using
the example in Fig. 4 appeared above. (For a more
detailed discussion of sequence diagrams, see

 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 227
 ICARI

Rumbaugh [24] and Booch [3].) In this section, we
discuss some possible extensions to UML that can
also model agent-based interaction protocols. Figure 6
depicts some basic elements for agent
communication. The rectangle can express individual
agents or sets (i.e., roles or classes) of agents. For
example, an individual agent could be labeled
Bob/Customer. Here Bob is an instance of agent
playing the role of Customer. Bob could also play the
role of Supplier, Employee, and Pet Owner. To
indicate that Bob is a Person—independent of any
role he plays—Bob could be expressed as Bob:
Person. The basic format for the box label is agent-
name/role: class. Therefore, we could express all the
various situations for Bob, such as Bob/Customer:
Person and Bob/Employee: Person.

Fig: 9. Basic formats for agent communication

The rectangular box can also indicate a universal
set of agents playing a precise role. Here, just the
word Customer or Supplier would come into view. To
identify that the role is to be played by a definite class
of agent, the class name would be appended (e.g.,
Employee: Person, Supplier: Party). In other words,
the agentname/ role: class sentence structure is used
without specifying an individual agent-name.

Fig: 10. Some recommended extensions that support

concurrent threads of interaction.
The agent-name/role: class syntax is before now

part of UML (apart from that the UML syntax
indicates an object name in its place of an agent
name). Figure 8 extends UML by classification the
arrowed line with an agent communication act (CA),
as an alternative of an OO-style message.

Another optional extension to UML supports
synchronized threads of interaction. While
synchronized threads are not forbidden in OO, they
are not frequently employed. Figure 9 depicts three

ways of expressing multiple threads. Figure 9(a)
indicates that all threads CA-1 to CA-n are sent at the
same time as. Figure 9(b) includes a decision box
representative that a decision box will make a
decision which CAs (zero or more) will be sent. If
more than one CA is sent, the interaction is
concurrent. In short, it indicates an inclusive or. Fig.
9(c) indicates an exclusive or, so that accurately one
CA will be sent. Figure 7(a) indicates and
communication.

Fig: 11. multiple techniques to express concurrent

communication with an agent playing multiple roles
or responding to different CAs.

Figure 11 illustrates one way of using the
synchronized threads of interaction depicted in Fig.
10. Figures 11(a) and (b) portray half each of
expressing synchronized threads sent from agent-1 to
agent-2. The numerous vertical, or activation, bars
point to that the in receipt of agent is dispensation the
various communication threadsconcurrently. Figure
10(a) displays parallel foundation bars and Fig. 11(b)
establishment bars that appear on top of each other. A
few things should be noted about these two variations:

 The semantic connotation is equivalent; the
choice is based on ease and clarity of visual
manifestation.

 Each commencement bar can indicate either that
the agent is using a dissimilar role or that it is
simply employing a diverse processing thread to

 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 228
 ICARI

support the communication act. If the agent is
using a different role, the commencement bar can
be annotated suitably. For example in Figs. 11(a)
and (b), Can is handled by the agent under its
role-1 processing.

 These figures indicate that a single agent is at the
same time as dispensation the multiple CAs.
However, the simultaneous CAs could each have
been sent to a different agent, e.g., CA-1 to agent-
2, CA-2 to agent-3, and so on. Such protocol
performance is already supported by UML; the
notation in Fig. 9, on the other hand, is a
recommended extension to UML.

Fig: 12. An example of a collaboration diagram
depicting an interaction among agents playing

multiple roles.

7.2 Collaboration Diagrams

Fig: 13. A sequence diagram version of Fig. 11

Figure 12 is an example of a collaboration
diagram and depicts a pattern of communication
among agents. One of the primary distinctions of the
collaboration diagram is that the agents (the
rectangles) can be placed anyplace on the diagram;

while in a sequence diagram, the agents are situated in
a horizontal row at the diagram’s top. The sequences
of communications are numbered on the
Collaboration diagram; whereas the communication
diagram is basically read from the top down. If the
two interaction diagrams are so similar, why have
both? The answer lies principally in how clear and
comprehensible the appearance is. Depending on the
person and communication protocol being described,
one diagram type might provide a clearer, more
comprehensible representation over another.
Semantically, they are corresponding; graphically
they are similar. For example, Fig. 11 expresses the
same fundamental meaning as Fig. 10 using the
sequence diagram. Experience has established that
agent-based modelers can find both types of diagrams
useful.

7.3 Activity Diagrams

Agent interaction protocols can occasionally
require stipulation with very clear processing-thread
semantics. The activity diagram expresses operations
and the events that trigger them. The example in Fig.
14 depicts an order dispensation protocol among
several agents. Here, a Customer agent places an
order. This procedure results in an Order placed event
that triggers the broker to place the order, which is
then conservative by an Electronic Commerce
Network (ECN) agent. The ECN can only connect an
order with a citation when both the order and the
Market Maker’s quote have been recognized. Once
this occurs, the Market Maker and the Broker are at
the same time as notified that the trade has been
completed. The activity diagram differs from
interaction diagrams because it provides an
unambiguous thread of control. This is predominantly
useful for complex interaction protocols that involve
simultaneous processing.

Activity diagrams are alike in nature to colored
Petri nets in more than a few ways. First, activity
diagrams make available a graphical demonstration
that makes it possible to create in your mind processes
simply, thereby facilitating the design and
communication of behavioral models. Second,
activity diagrams can represent concurrent,
asynchronous processing. Lastly, they can express
concurrent communications with several
correspondents. The primary dissimilarity between
the two approaches is that activity diagrams are
officially based on the comprehensive state-machine
model defined by UML [24]. Ferber’s BRIC
formalism [8] extends Petri nets for agents-based
systems; this paper extends UML activity diagrams
for the same purpose.

 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 229
 ICARI

Fig: 14. An activity diagram that depicts a stock sale

protocol among several agents.

7.4 Statecharts

Another process-related UML diagram is the
statechart. A statechart is a graph that represents a
state machine. States are represented as round-
cornered rectangles, while transitions are normally
rendered by heading for arcs that be linked the states.
Figure 15 depicts an example of a statechart that
governs an Order protocol. Here, if a given Order is in
a Requested state, a supplier agent may entrust to the
requested negotiation—resulting in a transition to a
dedicated negotiation state. Furthermore, this diagram
indicates that an agent’s Commit action may occur
only if the Order is in a Requested state. The
Requested state has two other likely actions besides
the Commit: the supplier may refuse and the customer
may back out. Notice that the supplier may refuse
with the order in either the Proposed or the Requested
states.

Fig: 15. A statechart indicating the valid states and
transitions governing an Order protocol.

The statechart is not normally used to express
interaction protocol for the reason that it is a state-
centric view, rather than an agent- or process-centered
view. The agent-centric outlook portrayed by
interaction diagrams emphasizes the agent first and
the interaction second. The process-centric view

emphasizes the process flow (by agent) first and the
consequential state change (i.e., event) second. The
state-centric view emphasizes the allowable states
more significantly than the changeover agent
processing. The most important strength of the
statechart in agent interaction protocols is as a
restriction mechanism for the protocol. The statechart
and its states are characteristically not implemented in
a straight line as agents. However, an Order agent
could embody the state-transition constraints, thereby
ensuring that the overall interaction protocol
constraints are met. Alternatively, the constraints
could be personified in the supplier and customer
roles played by the agents involved in the order
process.

8. Level 3: Representing Internal Agent
Processing
At the lowest level, requirement of an agent

protocol used spelling out the thorough giving out that
takes place within an agent in order to put into
practice the protocol. In a holarchic representation,
higher-level agents (holons) consist of aggregations of
lower-level agents. The internal performance of a
holon can thus be described by means of any of the
Level 2 representations recursively. In addition, state
charts and activity diagrams can also identify the
internal dispensation of agents that are not aggregates,
as illustrated in this section.

8.1 Activity Diagrams

Figure 16 depicts the detailed dispensation that
takes place within an Order Processor agent. Here, a
succession diagram indicated that the agent's process
is triggered by a Place Order CA and ends with the
order finished. The internal dispensation by the

Fig: 16. An activity diagram that specifies order

processing behavior for an Order agent

 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 230
 ICARI

OrderProcessor is articulated as an activity diagram,
where the OrderProcessor accepts, assembles, ships,
and closes the order. The dotted operation boxes
correspond to interfaces to processes carried out by
external agents—as also illustrated in the sequence
diagram. For example, the diagram indicates that
when the order has been assembled, both Assemble
Order and Prepare/send Invoice actions are triggered
concurrently. Additionally, when both the payment
has been established and the order has been shipped,
the Close Order process can only then be invoked.

8.2 Statecharts

The internal dispensation of a single agent can
also be articulated as statecharts. Figure 17 depicts the
interior states and transitions for Order Processor,
Invoice Sender, and Payment Receiver agents. As
with the activity diagram above, these agents interface
with each other—as indicated by the dashed lines.
This intra-agent use of UML statecharts supports
Singh’s notion of agent skeletons [10].

9. Conclusions

Fig: 17. Statechart that specifies order processing

behavior for the three agents

UML provides tools for specifying agent interaction
protocols at multiple levels:
 Specifying a protocol as a whole, as in [9];
 Expressing the interaction pattern among agents

within a protocol, as in [1, 8, 11]; and
 The internal behavior of an agent, as in [10].
Some of these tools can be sensible directly to agent-
based systems by adopting simple idioms and
conventions. In other cases, we suggest several clear-
cut UML extensions that support the additional
functionality that agents offer over the current UML
version 1.4. Many of these proposed extensions are
before now being measured by the OO community as
useful extensions to OO growth on UML version 2.0.
Furthermore, many of the AUML notions presented
here were developed.
Agent researchers can be gratified at the increasing
attention that industrial and business users are paying
to their results. The transfer of these results to
practical application will be more rapid and accurate
if the research community can communicate its
insights in forms consistent with modern industrial
software practice. AUML builds on the acknowledged
success of UML in supporting industrial-strength
software engineering. The idioms and extensions
proposed here for AIP’s—as well as others that we
are developing—are a contribution to this objective.

 ISBN 978-93-5156-328-0
International Conference of Advance Research and Innovation (ICARI-2014)

 231
 ICARI

References
[1] M. Wooldridge, N. R. Jenning, D. Kenny, “The

Gaia Methodology for Agent-Oriented Analysis
and Design”

[2] Mark F. Wood, Scott A. Deloach, “An Overview
of multiagent systems Engineering Methodology”

[3] Scott A Deloach, “Analysis and Design using
MaSE and AgentTool”

[4] http://cs-exhibitions.uni
klu.ac.at/index.php?id=448

[5] http://www.tutorialspoint.com/uml/uml_use_case
_diagram.htm

[6] Rumbaugh, James, Ivar Jacobson, and Grady
Booch, TheUnified Modeling Language
Reference Manual, Addison-Wesley, Reading,
MA, 1999

[7] Parunak, H. Van Dyke, and James Odell,
Engineering Artifacts for Multi-Agent Systems,
ERIM CEC, 1999.

[8] Burmeister, B., ed., Models and Methodology for
Agent-Oriented Analysis and Design 1996

[9] Wooldridge, Michael, Nicholas R. Jennings, and
David Kinny, "The Gaia Methodology for Agent-
Oriented Analysis and Design," International
Journal of Autonomous Agents and Multi-Agent
Systems, 3:Forthcoming, 2000

[10] Singh, Munindar P., ed., Developing Formal
Specifications to Coordinate Heterogeneous
Autonomous Agents IEEE Computer Society,
Paris, FR, 1998.

[11] Parunak, H. Van Dyke, ed., Visualizing Agent
Conversations: Using Enhanced Dooley Graphs
for Agent Design and Analysis 1996

