

International Conference on Electrical, Information and Communication Technology

 257
 IJARI

Fuzzy Optimised Power Generation from Moving Vehicles
Roohi Banu I, Sindhu T, Vinothini S P, Yamini J P, Bharath Kumar S
Department of Electrical Engineering, M.A.M College of Engineering,, Tamil Nadu, India
 Abstract

In our Paper regenerative power system for electric motorcycles and cars that
performs regenerative energy recovery from the axle of the vehicle based on
fuzzy logic control for a boost converter is used to boost (maintain) the voltage
level. Autonomous vehicles have potential applications in many fields, such as
replacing humans in hazardous environments, conducting military missions,
and performing routine tasks for industry. A constant regenerative current
control scheme is proposed, thereby providing improved performance and high
energy recovery efficiency at minimum cost. Drivers typically respond quickly
to sudden changes in their environment. While other control techniques may be
used to control a vehicle, fuzzy logic has certain advantages in this area; one of
them is its ability to incorporate human knowledge and experience, via
language, into relationships among the given quantities.

1. Introduction
Semantic web services frameworks provide

comprehensive tools to describe services and their
interactions. Semantic approaches add significantly to the
resource requirements. As such, cloud computing is
candidate to bridge the gap between resource-constrained
environment and resource-intensive Web service discovery.
It opens up new opportunities for mobile devices to
efficiently perform service discovery, while substantially
reducing their resource consumption. Cloud computing not
only bootstraps the performance of service discovery in
mobile environments, but also removes development
constraints by expanding the horizon with more options to
apply sophisticated techniques that might potentially result
in better service discovery.

Researchers over the past few years have focused on
optimizing specific aspects of current Web service
discovery approaches in isolation or overcoming individual
limitations (such as intermittent connectivity) to fit the
inherent constraints and dynamic context of mobile
domains.

 However, the lack of a comprehensive understanding
of both user context, and the various constraints of mobile
environments, renders most of these approaches incapable
of efficient and reliable discovery in mobile scenarios.

Context-aware computing refers to a general class of
mobile systems that can sense their physical environment,
and adapt their behavior accordingly. Context-aware
systems are a component of a ubiquitous computing or
pervasive computing environment. Three important aspects
of context are: where you are; who you are with; and what
resources are nearby. Although location is a primary
capability, location-aware does not necessarily capture
things of interest that are mobile or changing. Context-
aware in contrast is used more generally to include nearby
people, devices, lighting, noise level, network availability,
and even the social situation, e.g., whether you are with
your family or a friend from Context can refer to real-world
characteristics, such as temperature, time or location. This
information can be updated by the user (manually) or from

Corresponding Author,
E-mail address: vino.eee19@gmail.com
All rights reserved: http://www.ijari.org

 communication with other devices and applications or
sensors on the mobile device. An example of a context-
aware service could be a real-time traffic update or even a
live video feed of a planned route for a motor vehicle user.

The paper should start with an abstract, followed by
the main body of the paper as follows. Section 2 describes
the proposed framework and relevant research efforts that
may be potentially applied for each component. Section 3
describes the framework functionality is validated and
evaluation. Finally, section 4 draws the concluding remarks
of the paper.

2. Daas: Mobile Cloud Based Service
Discovery Framework
Based on the limitations of existing DAAS service

only check the client environment and give the top services
in mobile now plan to study the tradeoff between
performing the context matching on the mobile device and
offloading it to the cloud, where service matching occurs.

Fig: 1- Example of an overview of the service discovery

framework Daas.

3. Skyline Computation Module:
A service skyline can be regarded as a set of SEPs that

are not dominated by others in terms of all user interested
QoWS aspects, such as response time, fee, and reputation.
The service providers in the skyline represent the best
tradeoffs among different user interested quality aspects.

Article Info
Article history:
Received 2 February 2015
Received in revised form
20 February 2015
Accepted 28 February 2015
Available online 6 March 2015
Keywords

International Conference on Electrical, Information and Communication Technology

 258
 IJARI

There are several key extensions on skyline analysis aiming
to make it more flexible and adapt to user’s preferences.
1.1 Customer layer
1.1.1 Service Request

Multimodal mobile user interface that enables end-
users to submit Web service request that express their
specific objectives. The service request is submitted in a
plain text that describes the user’s objective. For the Mobile
users usually have limited input capabilities, which are
unsuitable for a formatted service request or a formal
service description language (i.e. in semantic services).

The plain text fits well for the service request within
mobile device constraints. Therefore, analysis of the user
input is done by the Service Request Handler to extract
keywords and meaningful information. These keywords are
used in keyword-based matching. In case of semantic
matching, they can be used to construct a formatted service
request.
1.1.2 Context Manager

The Context Manager is responsible for collecting user
environment context using mobile device embedded sensors
and capabilities. It also handles the user preferences and
Such context information is used to rank relevant Web
services according to their best fit into such context. For
Context Manager also monitors available networks and their
status.
1.2 Cloud Layer

This layer deployed on the cloud where computational
resources and power consumption are of less concern.
1.2.1 Request Handler

The Request Handler performs advanced processing
operations on the user request. It extracts keywords from the
user request using text analytics techniques. These
keywords are used to perform keyword-based service
matching, or format the service request to match the
different possible service description languages (WSDL,
OWL-S, WSMO, WSDL-S, etc.), according to the available
services in the cloud service repository.
1.2.2 Request Analyzer

 Mainly gets involved when no atomic services are
found satisfying the request objective. In other words, DaaS
presents two levels of service discovery.[1]The service
request is matched first with atomic services that totally
satisfy the user’s objective. [2]If no relevant services are
found, the Request Analyzer breaks down the request into
primitive subtasks ST = {st1, st2. . . stn}, if possible, and
satisfies each subtask separately. For Breaking down the
request (in collaboration with the Service Composer) may
follow approaches Start with the request inputs to get the
request outputs with exact or partial matches, and Find
services that have exact matches with subtasks, i.e. the
matchmaking algorithm yields an EXACT or SUBSUMES
match between the subtask inputs/outputs and the relevant
service inputs/outputs.
1.2.3 Service Composer

DaaS is responsible for the orchestration process and
generating composition plans for atomic Web services that
satisfy the individual primitive subtasks, and together ful-

fill the original service request. Resolving users’ requests
via composite services, Propose a framework for semantic
Web service composition in mobile environments. Their
framework converts WSDL files into OWL-S specifications
and generates a service profile for the request. Then, it
performs a semantic reasoning between the advertised
service profile and the request service profile.
1.2.4 Search/ Matchmaking

The Search/Matchmaking module matches the
functionalities described in the request and the capabilities
offered by Web services. For non-semantic Web services,
i.e. described by WSDL files, the matching between the
request and Web services is keyword-based and uses
information retrieval techniques. These keywords are used
to index Web services and later matched with keywords
extracted from the user request. Semantically described
Web services are discovered using high level matchmaking
approaches.
1.2.5 Request Matching Algorithm

The service request component receives a set of
relevant Web services S = {s1, s2,., sl} and ranks them
based on the following four various types of context
domains: user preferences P = {p1, p2, . . . , pi}, device
profile D = {d1, d2, . . , dj}, environment context E = {e1,
e2, . . . , ek}, and user ratings Rsl , where Rsl represents the
normalized average rating for a service sl.

Void function ReqMatch(SR)
{
int s,sr,st,p,d,e;
//search for atomic service first
//trying to fulfill the whole request with single request
s=match(sr);
if{//subtasks st;
st=split(sr);
for(int st=0;st<=ST; st++)
{
do{s=s +match(st);
}}
else if
{
s=composer(s);
}
return s;
}}

1.2.6 Ranking Algorithm
The Service Ranking module employs the information

in this file and that collected at the customer side to rank the
relevant services. Accordingly, the discovery process may
realize that the requester is able to execute limited
functionalities of particular services and so rank them
accordingly.

Void function rank(s,p,e,d,r){
int ranks;
for{
 rank s=calculate Eq.(2)
 rank S=Rank S+ Rank s
}
//sort the results
Sort(rank s);
 return rank s;

International Conference on Electrical, Information and Communication Technology

 259
 IJARI

}
 During the request communication session, the

discovery mechanism collects the features of the customer’s
device Dc = {dc1, dc2. . . dcj} corresponding to the required
device profile D. Simultaneously, the device senses various
ambient conditions to better assess the environment status
Ec = {ec1, ec2, . . . , eck}. For each service sl, there are
features ps corresponding to user preferences P as expressed
by the matrix in Eq. (1). These features can be extracted
from the service description files.

 Sp= (1)

The rank of each service S in then is represented by the
formula
Rank Sl =

 (2)
Where w represents the weight of each corresponding

feature. This weight indicates the level of importance of
such a feature to either the service customer or the service
provider. The function f computes the relation between two
objects as

f(a,b)= (3)

Where sim(a, b) is a featureless similarity factor
computed between objects a and b using Normalized
Google Distance (NGD) . sim(a, b) is calculated by Eq. (4).

Sim(a,b)=1-NGD(a,b) (4)
f (a, b) yields values ∈ [0 . . . 1]. In the case where a

and b are numbers, values greater than or equal 0.5 means
that b satisfies a. The closer the value to 1, the greater the
satisfaction that condition achieves relative to the condition
a. In the case where a and b are text (keywords), the
function value close to 1 indicates that the terms a and b are
semantically related, where values close to 0 indicates that
they are not related. Algorithm 2 symbolically explains how
ranking works.
1.2.7 One Pass Algorithm

 During the single pass of the CSEP space, OPA
enumerates the candidate CSEPs one by one and only stores
the potential skyline CSEPs. It outputs the skyline after all
the candidate CSEPs have been examined. OPA requires
that all the SSkies are sorted according to the scores of the
SEPs. OPA works as follows (shown in Algorithm 1). It
starts by evaluating the first CSEP (referred to as CSEP1)
that is formed by combining the top SEPs from each S-Sky.
It is guaranteed that CSEP1 2 C-Sky because CSEP1 has the
minimum score so that no other CSEPs can dominate it.
With the minimum score, CSEP1 is expected to have a very
good pruning capacity.

 for (N= |Ski|){
 // number of candidate CSEPs
 CSEP i =Aggregate(SEP11,…..SEPm1);
 C-Sky.add(CSEP1);
 for (i)
 CSEP i =EnumerateNext(SK 1,…..SK m);
 IsDominated =false ;

 for (j)
 CSEP j= C-Sky.get(j);
 if { CSEP i.score < CSEP j. score then
 if{ CSEP I < CSEP j then
 C-Sky.remove(j);
 }
 else
 if { CSEP j< CSEP I then
 IsDominated=True;
 break;
 }
 }
 if
{ IsDominated= = False then
 C-Sky.add(CSEP i);
 }
}

1.3 Web service Clustering
This component clusters Web services into

functionally similar groups based on their descriptions.
Therefore, the Service Matching does not need to match the
user request against all the service offerings in the corpus,
but rather with a particular set of services that share similar
functionality. The clustering and classification of new
services are performed offline to eliminate any overhead
during service matching.

The service clustering renders centralized repositories
performing similar to distributed approaches in P2P
architectures, where each domain-specific service are
maintained and matched separately. Our clustering approach
not only reduces the response latency by reducing the search
space, but also improves the recall and precision via data
mining and text analytic techniques. In addition, it takes
advantage of the continuous crawling of service engines by
enabling adaptive re-clustering and self organization in
order to cope with the dynamicity of Web services.
1.4 Provider Layer

Mobile service scenarios, service providers could be a
mobile entity with limited resources. DaaS removes the
burden on such resource constrained providers by shifting
resource-intensive processes to the cloud, keeping only
necessary components on mobile elements. Our framework
the only component that providers need to run using local
resources is the module responsible of announcing Web
service availability.
1.4.1 Service Advertiser

This component announces the existence of Web
services in a local service directory. Publishing Web
services in a local service directory is similar to publishing
services in an enterprise UDDI but on an individual scale.
The direct benefit of this approach is putting service
providers in full control of their offerings. This also
eliminates the burden of service registration and de-
registration that service providers are required to do with the
UDDI approach. It also makes it easier to keep local service
repositories up-to-date and self-maintained.
1.4.2 Local Services Directory

Service providers maintain a local directory that
contains all Web services they offer. DaaS adopts a

International Conference on Electrical, Information and Communication Technology

 260
 IJARI

distributed service directory approach, where each mobile
device manages its own offered Web services and maintains
references to services it knows about. Local services are
hosted and provided by the local system.
1.4.3 Remote Services Directory

Remote service are active and running services host the
other mobile devices. Handling remote services requires a
coordination protocol to manage link updates, advertisement
notifications, invalid service and link removal, duplicate
reference avoidance.

2. Conclusion
This project implements this entities have been used

User, cloud and Service Provider. We can dominate the
other services based on Quality of services based on
response time and the rank of the services. The one pass
algorithm improves the efficient service selection in web

service. Cloud has an unlimited storage spaces and store a
more and more web services. User request the services
through our mobile, the cloud return the services based on
mobile device configuration, user ranking for the services.
Implementation of mobile app through the Android, and
useful for mobile based spatial search in tourist place over
the world, mainly to reduce energy constraint for any spatial
data searching time. More ever, we can tradeoff between
performing the context matching on the mobile device and
offloading it to the cloud, where service matching occurs.
We also contribute how DaaS scales across distributed data
centers in the cloud. Performance evaluation reveals that the
overall response time is dominated by the service matching
process, while context processing contributes a relatively
small component, yet this varies according the number of
matching service.

References
[1] Athman Bouguettaya, Qi Yu, Efficient Service Skyline

Computation for Composite Service Selection IEEE
Transactions on Knowledge and Data Engineering,
25(4), 2013

[2] J. M. García, D. Ruiz, A. Ruiz-Cortés, A model of user
preferences for semantic services discovery and
ranking, ESWC 2010, II, 6089, 1–14

[3] J. Pathak, N. Koul, D. Caragea, V.G. Honavar, A
framework for semantic web services discovery,
Proceedings of the 7th Annual ACM International

Workshop on Web Information and Data Management,
45–50

[4] K. Elgazzar, P. Martin, H.S. Hassanein, A framework
for efficient web services provisioning in mobile
environments, The 3rd International Conference on
Mobile Computing, Applications, and Services,
Springer’s LNICST, 2011

[5] R. Singh, S. Mishra, D.S. Kushwaha, An efficient
asynchronous mobile web service framework,
SIGSOFT Softw. Eng. Notes 34, 2009, 1–7

