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Abstract 

Electric vehicles are believed to be an effective solution for reducing greenhouse gas 

emissions. Despite extensive study on the attributes and characteristics of electric 

vehicles and their charging infrastructure design, the development and network 

modelling of electric vehicles are still evolving and limited. This article provides a 

comprehensive review of electric vehicle studies and identifies existing research 

gaps in the aspects of theories, modelling approaches, solution algorithms and 

applications. This article first describes the electric vehicles’ concepts, market share, 

characteristics and charging infrastructures. Then, the studies on traffic assignment 

problem with electric vehicles in the network and limited charging facilities are 

particularly discussed. We conclude that it is of great importance to take into account 

electric vehicles’ special characteristics (e.g. range limit) in predicting their routing 

behaviour and charging infrastructure design networks. 
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Introduction 

Carbon-based emissions and greenhouse gases (GHGs) are critical issues that 

policy-makers have sought to address globally since the Kyoto Protocol issued in 

1998.1 The transportation is 98% dependent on fossil oil which is exceedingly 

affected by changes in energy resources.2 Governments and automotive companies 

have recognized the value of alternative fuel vehicles (AFVs) for green 
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transportation3 and have been implementing economic policies to support electric 

vehicles’ (EVs) market. 

Plug-in hybrid electric vehicle (PHEV) is one of the AFVs which can reduce GHG 

emissions.2 The hybrid gasoline–EV is greatly promising in future since it can reduce 

gasoline consumption and GHG emissions from 30% to 50% without the need of 

changing the vehicle class.4 However, a more widespread use of EVs is still 

hindered by the limited battery capacity, which allows cruising ranges between 150 

and 200 km.5 In addition, the chicken and egg problem6– who will build and buy the 

AFVs if a refuelling infrastructure is not in place and who will build the refuelling 

infrastructure before the AFVs are built – remains the most intractable barrier. 

The driving range limit inevitably introduces a certain level of restrictions to battery 

electric vehicle (BEV) drivers’ travel behaviours, considering the insufficient 

coverage of recharging infrastructures in a foreseeable future time period. The 

widespread adoption of plug-in electric vehicles (PEVs) calls for the fundamental 

changes of the existing network flow modelling tools in capturing the potentially 

changed behaviours, as well as the induced constraints on forecast of travel 

demands and evaluation of transportation development plans.7 

In this article, we explore various topics with respect to the network modelling of 

EVs. The structure of this article and main focus are described as follows: 

a. In section ‘Charging station design and location studies’, the studies on battery 

charging station and battery-swapping station (BSS) location, as well as their 

design, are briefly introduced. These aspects are mostly concerned for the 

development and acceptance of EVs’ market. 

b. In section ‘PEV market potential, demand and behaviour study’, the PEV market 

potential and its demand are reviewed from the aspects of EVs’ infrastructure, 

challenges and opportunities. Then, the characteristics of EVs and EV drivers’ 

behaviour are discussed by comparing with the traditional gasoline vehicles. 

c. In section ‘TAP of vehicles with range limit’, the studies on traffic assignment 

problem (TAP) for EVs’ network with limited charging infrastructure are 

summarized. Shortest path problem (SPP) is a sub-problem of TAP, and extra 
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constraints, such as driving range and availability of charging, need to be taken 

into consideration as the EV SPP. The vehicle routing problem (VRP) of EVs, 

which is a logistic issue that generalizes the well-known travelling salesman 

problem and usually takes distance or energy-constrained SPP as its subroutine, 

is discussed. 

d. In section ‘Network design and bi-level model’, the network design problem 

(NDP) of EV and the bi-level models in solving the TAP are discussed. In bi-level 

model, the upper level can be seen as charging facility location problem, while 

the lower level is TAP. 

e. Finally, the research gaps in network modelling of EVs are identified and 

potential future research direction is suggested. 

Charging facilities are essential for EV drivers. Suppliers, such as EV companies 

and governments, are concerned about where to locate charging stations and what 

type of charging station to locate because of the high cost of building these facilities. 

Although many cities are planning the construction and expansion of BEVs’ charging 

infrastructures, it is likely that BEV commuters will need to charge their vehicles at 

home most of the time in the foreseeable future.8 For many EVs, such as Nissan 

Leaf or Chevrolet Volt, the current method of recharging the vehicle battery is to plug 

the battery into the power grid at home or office.9 The battery requires an extensive 

period of time to recharge, and this largely constrains the EVs’ usage only for short 

distance travel. EV companies are trying to overcome this limited range requirement 

with fast charging stations where a vehicle can be charged in only a few minutes. Bai 

et al.10 proposed an optimum design of a fast charging station for PHEVs and EVs to 

minimize the strain on the power grid while supplying vehicles with the required 

power. Qiu et al.11 analysed the characteristics of EVs’ arriving time and charging 

duration in fast charging stations and established a queuing system model to 

optimize the allocation number of EV chargers using the stochastic service system 

and queuing theory. Compared to the gasoline vehicles, the EVs take more time to 

recharge and the fast charging station costs more to operate.12 These inherent 

problems, combined with a lack of recharging infrastructure, highly inhibit a wide-

scale adoption of EVs. These problems are especially apparent for longer trips such 

as inter-city trips. Range anxiety (a driver may be afraid that the vehicle will run out 
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of charge before reaching the destination) is a major hindrance for EVs’ market 

penetration.13 Hybrid vehicles, which have both an electric motor and a gasoline 

engine, can alleviate the range anxiety to some extent. However, these vehicles do 

not fully mitigate the environmental consequences since hybrids still require 

gasoline.14 

Another refuelling infrastructure design is to have quick battery exchange stations 

(BESs) or BSSs. These stations will remove a pallet of batteries that are nearly 

depleted from a vehicle and replace the battery pallet with one that has already been 

charged.15 This method of refuelling has the advantage that it is reasonably quick. 

The unfortunate downside is that all of the vehicles served by the BES are required 

to use the identical pallets and batteries. It is assumed here that the developers of 

these battery pallets will coalesce around a single common standard. BESs have 

been tried out by taxi vehicles in Tokyo in 2010.16 Denmark is investigating the 

possibility of having sufficient battery exchange locations so that the country relies 

on none, or very few, gasoline-powered vehicles.17 

There is a complementary location problem with regard to where to locate these 

‘refuelling’ stations including battery recharging, battery exchanging and other 

alternative refuelling options. The problem of optimally locating such refuelling 

stations has been investigated by several researchers using flow refuelling location 

model.18–20 To enable mobility of EVs, models of the placement of least charging 

stations on the shortest path are proposed to avoid detours for charging.21,22 A 

conceptual optimization model is proposed to analyse travel by EVs along a long 

corridor. The objective is to select the battery size and charging capacity (in terms of 

charging power at each station and the number of stations needed along the 

corridor) to meet a given level of service in such a way that the total social cost is 

minimized.23 Wang and colleagues24,25 proposed a refuelling station location model 

based on vehicle routing logics using a set cover concept with consideration of both 

inter-city and intra-city travels. MirHassani and Ebrazi26 presented a flexible mixed-

integer linear programming model by reformulating the flow refuelling location model. 

The model can obtain an optimal solution much faster than the previous set cover 

version and it can be solved in the maximum cover form. Xi et al.27 developed a 
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simulation–optimization model that determined where to locate EV chargers to 

maximize their use by privately owned EVs. Dong et al.28 studied EV charging 

station location problems and analysed the impact of public charging station 

deployment on increasing EVs’ travel miles. 

PEV market potential, demand and behaviour study 

With respect to PEV market potential, the car of the near future is the hybrid 

gasoline–EV, and it will likely become the dominant vehicle platform by the year 

2020.4 Global positioning system (GPS) data of the households were used to 

illustrate how PEVs can match different household (single-vehicle or multiple-

vehicle) needs. Cost comparisons between the PHEV and conventional gasoline 

vehicle were conducted and the annual savings were given.29 The reduction that a 

PHEV provides in both transportation costs and GHG emissions with respect to a 

comparable conventional vehicle was also discussed.30 Smart and Schey31 analysed 

the Nissan Leaf, which is a BEV, and concluded that the drivers drove 6.9 miles per 

trip, 30.3 miles per day on average and the average number of charging times was 

1.05 per day, as well as 82% of charging events were conducted at home. Chargers 

and the associated cords are categorized by voltage and power levels: Level I is 

120 V alternating current (AC) up to 20 A (2.4 kW); Level II is 240 V AC up to 80 A 

(19.2 kW) and Level III, which is yet to be defined fully, will likely be 240 V AC and 

greater at power levels of 20–250 kW. The SAE J177232 standard defines a five-pin 

configuration that will be used for Level I and Level II charging. A Level III connector 

and the use of the current connector for direct current (DC) power flow are under 

development. Markel33 summarized the components of the PEV infrastructure, 

challenges and opportunities related to design and deployment of the infrastructure 

and potential benefits. Dong et al. proposed a stochastic modelling approach to 

characterize BEV drivers’ behaviour using longitudinal travel data. It accounts for a 

more realistic analysis of the charging station impact on BEV feasibility. The actual 

range of a BEV is formulated as a Weibull-distributed variable, while the between-

charge travel distances is formulated using a Poisson–gamma distribution.34 Hidrue 

et al. analysed customers’ willingness to pay for EVs and their attributes using a 

stated preference study. It showed that the driving range, fuel cost savings and 

https://journals.sagepub.com/doi/full/10.1177/1687814015627981
https://journals.sagepub.com/doi/full/10.1177/1687814015627981
https://journals.sagepub.com/doi/full/10.1177/1687814015627981
https://journals.sagepub.com/doi/full/10.1177/1687814015627981
https://journals.sagepub.com/doi/full/10.1177/1687814015627981
https://journals.sagepub.com/doi/full/10.1177/1687814015627981
https://journals.sagepub.com/doi/full/10.1177/1687814015627981
https://journals.sagepub.com/doi/full/10.1177/1687814015627981


charging time rank as the most important factors and battery cost must drop 

significantly before EVs find a mass market without subsidy.35 He et al.36 proposed a 

model that captures the interactions among availability of public charging 

opportunities, prices of electricity and destination and route choices of PHEVs. 

TAP of vehicles with range limit 

In general, traffic assignment is characterized as an uncapacitated nonlinear multi-

commodity network flow problem under some given optimal or equilibrium routing 

principle. It is the last step of the traditional four-step travel demand modelling 

process and widely used an evaluation tool for a variety analysis of urban and 

regional traffic network.37 

The standard TAP can be solved efficiently using a Frank–Wolfe type algorithm 

within which the linearized sub-problem is to find shortest paths between each O–D 

pair. The problem of finding the shortest path for an EV was initially discussed by 

Ichimori et al.,38 where a vehicle has a limited battery and is allowed to stop and 

recharge at certain locations. Lawler39 sketched a polynomial algorithm for its 

solution, which makes EV SPP polynomially solvable. Although several studies 

considered EVs in traffic assignment, they only restricted the EV travel distances 

and assumed no refuelling.40 Adding refuelling stations to the shortest weight-

constrained path problem (SWCPP) is a NP-complete problem41 which has been 

discussed by Laporte and Pascoal.42 

EV SPPs considering various EV special constraints are extensively studied in EV 

VRP. These can be incorporated into TAP as a subroutine with EV network to enrich 

the family of TAP with EV network. Numerous works have addressed the classical 

VRP with capacity and distance constraints.43 Erdoğan and Miller44 extended the 

VRP to account for the additional challenges associated with operating a fleet of 

AFVs considering the driving range limit as well as the limited refuelling 

infrastructure. Adler et al.45 proposed an EV shortest-walk problem to determine the 

shortest travel distance route which may include cycles for detouring to recharging 

batteries from origins to destinations with minimum detouring. Cabral et al. studied 

the network design problem with relays (NDPR) on an undirected graph, which 
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generalized the SPP with relays and the weight-constrained SPP. The length 

between two consecutive relays does not exceed a pre-set upper bound.46 The 

problem of energy-efficient routing of EVs has been addressed, and the polynomial 

time algorithms have been developed in the literature by considering the limited 

cruising range and regenerative braking (i.e. the EV increases its level of energy 

when braking) capabilities of EVs which is actually a special case of the constrained 

SPP.47 Ryan and Miguel48 introduced a recharging VRP where vehicles with limited 

range are allowed to recharge at customer locations. A large body of work on 

optimal route planning for EV is proposed.49–51 

Some other issues regarding battery-swapping service have also been discussed 

under various frameworks. Mirchandani et al.52 discussed some new logistics 

relevant to the design and operations of a fleet of EV vehicles operating within a 

battery-exchanging infrastructure from the operational research perspective. 

Besides, Jiang et al.7 presented a network equilibrium problem with a combined 

destination, route and parking choices subjected to the driving range limit and 

alternative travel cost composition associated with BEVs. 

Network design and bi-level model 

The NDP is concerned with the modification of a transportation system, by adding 

new links or improving existing ones to minimize the total system costs consisting of 

system travel costs and investment costs.53 In the EV scheme, it means locating EV 

charging station in the traffic network and minimizing the total cost of charging 

station investment and travel cost. The bi-level programming technique can be used 

to formulate this equilibrium NDP.54 Wang et al. developed a global optimization 

method for a discrete NDP which can be applied in EV network design. It is 

formulated as a bi-level programming model, where the upper level aims to minimize 

the total cost (sum of total travel times and investment costs) and the lower level is a 

traditional Wardrop’s user equilibrium (UE) problem.55 Bi-level model has been 

applied in various congestion pricing schemes to design the toll for transport 

network.56–60 These models and solution algorithms61,62 can also be extended for EV 

scheme considering their similar framework and constraints. 
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Future developments 

Although there is a large literature related to the EV scheme, the EV network 

modelling (see Table 1) study is limited and evolving, including the EVs’ limited 

driving range, different charging facilities and lack of charging facilities. On this 

basis, the following research directions are proposed with direction no. 1, 2 and 7 

which are the extensions of existing models, while others are future research 

directions. 

 

Table 1. Overview of EV network modelling literature in the 

past 5 years. 

 

Table 1. Overview of EV network modelling literature in the past 5 years. 
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Extensions of the static traffic assignment model of EVs to stochastic traffic 

assignment or dynamic traffic assignment considering elastic demand 

There have been few researches on the stochastic or dynamic traffic assignment of 

EV as well as those considering elastic demand. The driving range limit and the lack 

of charging infrastructure are the two main characteristics of EVs at the current 

stage. To our best knowledge, it remains unsolved about how to develop the general 

stochastic user equilibrium (SUE) traffic assignment model or dynamic traffic 

assignment model with path distance constraints as well as the corresponding 

solution algorithms. Take stochastic traffic assignment model for example, it turns 

out that simply adding path distance constraints into Daganzo’s model, which is an 

unconstrained minimization model, cannot yield an optimization one of the 

generalized SUE conditions. 
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Extensions of BSS network model in which batteries can be treated as goods 

in traditional logistic management and transported from distribution centre to 

swapping stations 

There have been few studies found on the operating mode of the BSS which 

incorporates logistic management into the battery pack transportation. For now, the 

EV users have their batteries swapped at the swapping station, and the depleted 

batteries are then charged at that station with DC fast charger which usually takes 

around 1 or 2 h to charge to the full capacity. This kind of operating mode has a lot of 

disadvantages. First, it is hard to accurately predict the demand of battery-swapping 

service or the EV-arriving pattern (e.g. more EV users may swap during peak hours 

or public holidays) at each station, thus making it a hard choice to decide the number 

of chargers and battery inventory at each station. It is a waste of money and 

resource if the chargers are over built. If the number of chargers is less than what we 

need, it means that the EV drivers may have to wait for hours to get a full-energy 

battery which will discourage the user and eventually influence the market 

penetration. Second, DC fast charger needs a power of around 100 kW per charger 

for DC fast charging or Level 3 charging. Building one charger at a station is already 

a great burden for local electricity power grid; not to mention, it usually needs more 

than that. So, it will make few locations available for building new BSSs or rebuilding 

the existing gas station restricted by the power grid and the safety issue. Finally, the 

fast charging causes damage to the battery itself and reduces the battery life. By 

contrast, building a battery distribution centre can help to solve all the problems 

above to ensure the acceptable level of service via the proper operation of logistic 

management and inventory information system. Also, the existing gas station can be 

reconstructed by just adding a battery-swapping facility and a warehouse for battery 

storage. A battery distribution centre can give more flexibility to battery usage with 

regard to spatial and temporal distributions of the demand by adjusting the battery 

shipment scheme, thus reducing the number of batteries needed in the system by 

leveraging the battery transportation cost and battery manufacturing cost. Therefore, 

it is of great value to do this research towards developing a new operating mode for 

BSS, especially along the corridor between cities for the optimal design of future 



battery-swapping systems which would help in improving the level of service and 

attracting more drivers to the EVs. 

Bi-level model that incorporates an upper level of EV charging facility network 

design and a lower level of stochastic traffic assignment of EVs 

Bi-level model has been used successfully in many applications, such as 

NDP54,64 and congestion pricing scheme.56–60 Most of the bi-level models that involve 

traffic assignment are deterministic models in which there are no uncertainties of 

model inputs and the input values are fixed and known. However, the inputs of the 

upper level model can be the output of the lower level models that may be 

inaccurate if simple static traffic assignment model is used. Therefore, it is necessary 

to extend these bi-level models to consider uncertainties or perception errors of the 

EV users. One possible research direction is to incorporate recent stochastic 

modelling into these models considering EVs’ special behaviour including range limit 

or charging requirement. Moreover, one can define and incorporate various objective 

functions in terms of different cost composition or coverage need to evaluate upper 

level objective functions and adopt the extension of Wardrop’s principles in the lower 

level, so as to develop a new and more realistic framework for EV. 

Multi-class users and corresponding multi-class charging stations 

Little previous research has been done on multi-class EVs. There are various types 

of EVs and different EVs have different battery capacities or range limits. Besides, 

the corresponding charging system (e.g. connectors and plugs) differs. For example, 

three types of DC fast charging exist today. CHAdeMO is the most common one 

used by the Nissan Leaf and Mitsubishi vehicles. Recently, the Chevy Spark and the 

BMW i3 came to market with the SAE J1772 combined charging system (CCS), 

which uses a single port for either AC Level 1 and 2 or DC Level 2 charging. 

Additionally, Tesla is rapidly expanding their supercharger network, which is based 

on their own connector and currently can only charge Tesla vehicles. Each of these 

three standards operate at a variety of DC voltages, and each has a different 

maximum power level but replenish miles of range at roughly the same rate on 

average. 
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The issue of multi-class users is quite crucial for both the charging facility location 

design and the TAP. Different user class means different vehicle routing behaviour 

and different charging facilities. At the initial stage, the existing research has 

assumed that all the EVs use the same battery standard, and the charging facilities 

or swapping facilities are compatible for all types of EVs. There is a presence of 

charging facility location design with only different charging levels (e.g. AC Level 1, 

AC Level 2, DC fast charging and battery swapping) but without any consideration of 

multi-class users. Therefore, it is of considerable importance to perform in-depth 

research on the multi-class EV user problem because the battery technology is a 

main competitive factor in the EV market, and it is impractical for all the 

manufacturers to employ the battery with the same capacity and standard. 

Stochastic range anxiety 

There has been little research considering that different EV users have their own 

tolerance of ‘range anxiety’ which means that drivers will not always charge their 

batteries until the batteries are running out. Stochastic range anxiety of EV drivers 

will affect the charging station location scheme because people will react differently 

when they arrive at a charging station. So, it is important to consider the range 

anxiety as a stochastic term which differs among the user group so that battery 

demand forecast can be more accurate and the EVs’ arriving pattern can be more 

predictable. 

Efficient, convergent and robust algorithms for stochastic traffic assignment 

with path distance constraints for large-scale network 

The objective function of the SUE model with path-specific constraints has path-

specific term without explicit mathematical expressions, leading the resultant model 

to more difficulty in solving the global optimality than the classical traffic assignment 

models. Moreover, existing solution algorithms for stochastic traffic assignment with 

side constraints have only been applied to small networks. The robustness of the 

algorithms has not been tested yet. For large-scale network, distributed computing 

system could be of considerable significance to fulfil satisfactory execution time and 

accuracy level for probit-based SUE problem.65 So, developing global convergent 
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and efficient algorithms for solving such models with side constraints for large-scale 

EV transport networks is a challenging research direction in the future. 

Microscopic EV behaviours and impact of EVs’ signal priority 

Signal priority is an effective way to reduce vehicle delay at signalized 

intersections.66 Many cities around the world have taken steps to promote EVs’ 

market share, including government subsidy, free parking and signal priority. 

However, the potential impact of these measures above remains unclarified. In 

addition, behaviours, such as car following, overtaking and lane changing, may 

occur differently across EV classes. A car following model has been proposed to 

explore the influences of the EVs’ driving range on the driving behaviour.67 Take 

links with different numbers of lanes for example. It has been found that the platoon 

dispersion of traffic flow in low-friction conditions is affected by the number of 

lanes.68 So, the special microscopic EV behaviours also remain to be a potential 

worthy direction in the future. 

Potential impacts when attributes are related to EV change 

Recent advances in technology suggest that driving range can be extended, 

charging time shortened and battery cost lowered. Also, after a few years of massive 

production, the unit cost for EVs, like most new technologies, is likely to 

fall.35 Attributes related have great impacts on various aspects of EVs’ adoption. Oil 

and electricity prices will affect fuel cost saving, while the charging time and driving 

range concern about range anxiety. So, it is important to understand the market for 

EVs in the future when there are large push and sizable investment of resources in 

favour of EV. 

Charging station location on urban freeways 

Urban freeways have been deemed to be important transportation infrastructure.69–

72 Recent research of charging station location problem mainly focused on urban 

area or Central Business District (CBD) area, using standard p-median, p-centre, 

maximum covering, flow capturing and flow interception model to maximize 
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coverage. Considering EVs’ driving range, locating charging stations on urban 

freeways is more important and encouraging to eliminate range anxiety. Thus, there 

is an urgent need to develop optimal charging station location model on urban 

freeways, especially for inter-city trips. 
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